首页 > 军事前沿 > 正文

爱因斯坦留下世界级难题:中国量子空前大突破

在实际实验中,人们常常用一种叫做“量子纠缠分发”的实验验证Bell不等式,它是把制备好的两个纠缠粒子(通常为光子)分别发送到相距很远的两个点,通过观察两个点的测量结果是否符合贝尔不等式来验证量子力学和定域实在论孰对孰非。由于制备和发送的是一对对单光子,量子的不可复制性又决定了单光子的信号是不可放大的,光纤固有的光子损耗导致光量子传输很难向更远距离拓展。在地球表面,百公里级别的量子纠缠分发几乎已经是极限 。

怎么办呢?有两种方案,一种是利用量子中继,一个个中继站就有点像古时候的驿站,一段段地传递光子,但是目前来说量子中继的研究还是受到了量子存储的时间和效率限制;另一个方案就是利用卫星实现量子纠缠分发,外太空的真空环境对光的传输几乎不存在衰减和退相干效应。星地间的自由空间信道损耗小,甚至理论上,利用卫星,科学家们可以在地球上的任意两点之间建立起量子信道,有可能在全球尺度上实现超远距离的量子纠缠分发 。

2016年12月9日,在西藏阿里观测站,科研人员在做实验。

可喜的是,这方面,中国人走在了世界前列。

早在2003年,中国的潘建伟团队就提出了利用卫星实现远距离量子纠缠分发的方案,并开始了初步验证。团队的研究人员认为,要想证明卫星实现量子纠缠分发这事可行,就必须要证明光子能在穿透大气层后仍保持相干性,于是,他们开始在合肥大蜀山做实验。这个实验里,发送方在大蜀山,两个接收点分别在几公里之外的肥西农户家和中科大西校区。

实验在国际上首次实现了水平距离13公里(大气层垂直厚度约为5-10公里)的自由空间双向量子纠缠分发,证明了在经过远距离大气信道传输之后纠缠态仍能“存活”,另一方面,这个传输距离超过了大气层的等效厚度,证实了远距离自由空间量子通信的可行性。

2010年,该团队又在国际上首次实现了基于量子纠缠分发的16公里量子态隐形传输。基于前期关键技术准备,2011年底,中科院战略性先导科技专项“量子科学实验卫星”正式立项。2012年,潘建伟领导的中科院联合研究团队在青海湖实现了首个超过102km的量子纠缠分发实验。实验中衰减最高达80dB,一方面在更大尺度上验证了经过大气信道传输纠缠特性仍然存活,另一方面验证了在衰减非常大的情况下纠缠特性能够保持,进一步验证了卫星-地面纠缠分发的可行性。

2005年水平距离13公里的自由空间双向量子纠缠分发

随后的几年,该团队经过艰苦攻关,克服种种困难,最终研制成功了“墨子号”量子科学实验卫星。在亿万人的目光中,于2016年8月16日成功将“墨子号”送入轨道。经过四个月的在轨测试,2017年1月18日正式交付开展科学实验。

星地量子纠缠分发作为“墨子号”卫星的三大科学实验任务之一,是国际上首次在空间尺度上开展的量子纠缠分发实验。